1  
// Copyright 2018 Ulf Adams
1  
// Copyright 2018 Ulf Adams
2  
//
2  
//
3  
// The contents of this file may be used under the terms of the Apache License,
3  
// The contents of this file may be used under the terms of the Apache License,
4  
// Version 2.0.
4  
// Version 2.0.
5  
//
5  
//
6  
//    (See accompanying file LICENSE-Apache or copy at
6  
//    (See accompanying file LICENSE-Apache or copy at
7  
//     http://www.apache.org/licenses/LICENSE-2.0)
7  
//     http://www.apache.org/licenses/LICENSE-2.0)
8  
//
8  
//
9  
// Alternatively, the contents of this file may be used under the terms of
9  
// Alternatively, the contents of this file may be used under the terms of
10  
// the Boost Software License, Version 1.0.
10  
// the Boost Software License, Version 1.0.
11  
//    (See accompanying file LICENSE-Boost or copy at
11  
//    (See accompanying file LICENSE-Boost or copy at
12  
//     https://www.boost.org/LICENSE_1_0.txt)
12  
//     https://www.boost.org/LICENSE_1_0.txt)
13  
//
13  
//
14  
// Unless required by applicable law or agreed to in writing, this software
14  
// Unless required by applicable law or agreed to in writing, this software
15  
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  
// KIND, either express or implied.
16  
// KIND, either express or implied.
17  

17  

18  
// Runtime compiler options:
18  
// Runtime compiler options:
19  
// -DRYU_DEBUG Generate verbose debugging output to stdout.
19  
// -DRYU_DEBUG Generate verbose debugging output to stdout.
20  
//
20  
//
21  
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
21  
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
22  
//     depending on your compiler.
22  
//     depending on your compiler.
23  
//
23  
//
24  
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
24  
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
25  
//     required power of 5, only store every 26th entry, and compute
25  
//     required power of 5, only store every 26th entry, and compute
26  
//     intermediate values with a multiplication. This reduces the lookup table
26  
//     intermediate values with a multiplication. This reduces the lookup table
27  
//     size by about 10x (only one case, and only double) at the cost of some
27  
//     size by about 10x (only one case, and only double) at the cost of some
28  
//     performance. Currently requires MSVC intrinsics.
28  
//     performance. Currently requires MSVC intrinsics.
29  

29  

30  
/*
30  
/*
31  
    This is a derivative work
31  
    This is a derivative work
32  
*/
32  
*/
33  

33  

34  
#ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
34  
#ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
35  
#define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
35  
#define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
36  

36  

37  
#include <boost/json/detail/ryu/ryu.hpp>
37  
#include <boost/json/detail/ryu/ryu.hpp>
38  
#include <cstdlib>
38  
#include <cstdlib>
39  
#include <cstring>
39  
#include <cstring>
40  

40  

41  
#ifdef RYU_DEBUG
41  
#ifdef RYU_DEBUG
42  
#include <stdio.h>
42  
#include <stdio.h>
43  
#endif
43  
#endif
44  

44  

45  
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
45  
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
46  
// Let's do the same for now.
46  
// Let's do the same for now.
47  
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
47  
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
48  
#define BOOST_JSON_RYU_HAS_UINT128
48  
#define BOOST_JSON_RYU_HAS_UINT128
49  
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
49  
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
50  
#define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
50  
#define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
51  
#endif
51  
#endif
52  

52  

53  
#include <boost/json/detail/ryu/detail/common.hpp>
53  
#include <boost/json/detail/ryu/detail/common.hpp>
54  
#include <boost/json/detail/ryu/detail/digit_table.hpp>
54  
#include <boost/json/detail/ryu/detail/digit_table.hpp>
55  
#include <boost/json/detail/ryu/detail/d2s.hpp>
55  
#include <boost/json/detail/ryu/detail/d2s.hpp>
56  
#include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp>
56  
#include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp>
57  

57  

58  
namespace boost {
58  
namespace boost {
59  
namespace json {
59  
namespace json {
60  
namespace detail {
60  
namespace detail {
61  

61  

62  
namespace ryu {
62  
namespace ryu {
63  
namespace detail {
63  
namespace detail {
64  

64  

65  
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
65  
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
66  
// Multiplication:
66  
// Multiplication:
67  
//   The 64-bit factor is variable and passed in, the 128-bit factor comes
67  
//   The 64-bit factor is variable and passed in, the 128-bit factor comes
68  
//   from a lookup table. We know that the 64-bit factor only has 55
68  
//   from a lookup table. We know that the 64-bit factor only has 55
69  
//   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
69  
//   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
70  
//   factor only has 124 significant bits (i.e., the 4 topmost bits are
70  
//   factor only has 124 significant bits (i.e., the 4 topmost bits are
71  
//   zeros).
71  
//   zeros).
72  
// Shift:
72  
// Shift:
73  
//   In principle, the multiplication result requires 55 + 124 = 179 bits to
73  
//   In principle, the multiplication result requires 55 + 124 = 179 bits to
74  
//   represent. However, we then shift this value to the right by j, which is
74  
//   represent. However, we then shift this value to the right by j, which is
75  
//   at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
75  
//   at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
76  
//   bits. This means that we only need the topmost 64 significant bits of
76  
//   bits. This means that we only need the topmost 64 significant bits of
77  
//   the 64x128-bit multiplication.
77  
//   the 64x128-bit multiplication.
78  
//
78  
//
79  
// There are several ways to do this:
79  
// There are several ways to do this:
80  
// 1. Best case: the compiler exposes a 128-bit type.
80  
// 1. Best case: the compiler exposes a 128-bit type.
81  
//    We perform two 64x64-bit multiplications, add the higher 64 bits of the
81  
//    We perform two 64x64-bit multiplications, add the higher 64 bits of the
82  
//    lower result to the higher result, and shift by j - 64 bits.
82  
//    lower result to the higher result, and shift by j - 64 bits.
83  
//
83  
//
84  
//    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
84  
//    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
85  
//    that these are only 64-bit inputs, and can map these to the best
85  
//    that these are only 64-bit inputs, and can map these to the best
86  
//    possible sequence of assembly instructions.
86  
//    possible sequence of assembly instructions.
87  
//    x64 machines happen to have matching assembly instructions for
87  
//    x64 machines happen to have matching assembly instructions for
88  
//    64x64-bit multiplications and 128-bit shifts.
88  
//    64x64-bit multiplications and 128-bit shifts.
89  
//
89  
//
90  
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
90  
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
91  
//    instructions mentioned in 1.
91  
//    instructions mentioned in 1.
92  
//
92  
//
93  
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
93  
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
94  
//    the result, i.e., we have to use plain C.
94  
//    the result, i.e., we have to use plain C.
95  
//    Our inputs are less than the full width, so we have three options:
95  
//    Our inputs are less than the full width, so we have three options:
96  
//    a. Ignore this fact and just implement the intrinsics manually.
96  
//    a. Ignore this fact and just implement the intrinsics manually.
97  
//    b. Split both into 31-bit pieces, which guarantees no internal overflow,
97  
//    b. Split both into 31-bit pieces, which guarantees no internal overflow,
98  
//       but requires extra work upfront (unless we change the lookup table).
98  
//       but requires extra work upfront (unless we change the lookup table).
99  
//    c. Split only the first factor into 31-bit pieces, which also guarantees
99  
//    c. Split only the first factor into 31-bit pieces, which also guarantees
100  
//       no internal overflow, but requires extra work since the intermediate
100  
//       no internal overflow, but requires extra work since the intermediate
101  
//       results are not perfectly aligned.
101  
//       results are not perfectly aligned.
102  
#if defined(BOOST_JSON_RYU_HAS_UINT128)
102  
#if defined(BOOST_JSON_RYU_HAS_UINT128)
103  

103  

104  
// Best case: use 128-bit type.
104  
// Best case: use 128-bit type.
105  
inline
105  
inline
106  
std::uint64_t
106  
std::uint64_t
107  
    mulShift(
107  
    mulShift(
108  
    const std::uint64_t m,
108  
    const std::uint64_t m,
109  
    const std::uint64_t* const mul,
109  
    const std::uint64_t* const mul,
110  
    const std::int32_t j) noexcept
110  
    const std::int32_t j) noexcept
111  
{
111  
{
112  
    const uint128_t b0 = ((uint128_t) m) * mul[0];
112  
    const uint128_t b0 = ((uint128_t) m) * mul[0];
113  
    const uint128_t b2 = ((uint128_t) m) * mul[1];
113  
    const uint128_t b2 = ((uint128_t) m) * mul[1];
114  
    return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64));
114  
    return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64));
115  
}
115  
}
116  

116  

117  
inline
117  
inline
118  
uint64_t
118  
uint64_t
119  
mulShiftAll(
119  
mulShiftAll(
120  
    const std::uint64_t m,
120  
    const std::uint64_t m,
121  
    const std::uint64_t* const mul,
121  
    const std::uint64_t* const mul,
122  
    std::int32_t const j,
122  
    std::int32_t const j,
123  
    std::uint64_t* const vp,
123  
    std::uint64_t* const vp,
124  
    std::uint64_t* const vm,
124  
    std::uint64_t* const vm,
125  
    const std::uint32_t mmShift) noexcept
125  
    const std::uint32_t mmShift) noexcept
126  
{
126  
{
127  
//  m <<= 2;
127  
//  m <<= 2;
128  
//  uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
128  
//  uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
129  
//  uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
129  
//  uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
130  
//
130  
//
131  
//  uint128_t hi = (b0 >> 64) + b2;
131  
//  uint128_t hi = (b0 >> 64) + b2;
132  
//  uint128_t lo = b0 & 0xffffffffffffffffull;
132  
//  uint128_t lo = b0 & 0xffffffffffffffffull;
133  
//  uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
133  
//  uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
134  
//  uint128_t vpLo = lo + (factor << 1);
134  
//  uint128_t vpLo = lo + (factor << 1);
135  
//  *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
135  
//  *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
136  
//  uint128_t vmLo = lo - (factor << mmShift);
136  
//  uint128_t vmLo = lo - (factor << mmShift);
137  
//  *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
137  
//  *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
138  
//  return (std::uint64_t) (hi >> (j - 64));
138  
//  return (std::uint64_t) (hi >> (j - 64));
139  
    *vp = mulShift(4 * m + 2, mul, j);
139  
    *vp = mulShift(4 * m + 2, mul, j);
140  
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
140  
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
141  
    return mulShift(4 * m, mul, j);
141  
    return mulShift(4 * m, mul, j);
142  
}
142  
}
143  

143  

144  
#elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
144  
#elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
145  

145  

146  
inline
146  
inline
147  
std::uint64_t
147  
std::uint64_t
148  
mulShift(
148  
mulShift(
149  
    const std::uint64_t m,
149  
    const std::uint64_t m,
150  
    const std::uint64_t* const mul,
150  
    const std::uint64_t* const mul,
151  
    const std::int32_t j) noexcept
151  
    const std::int32_t j) noexcept
152  
{
152  
{
153  
    // m is maximum 55 bits
153  
    // m is maximum 55 bits
154  
    std::uint64_t high1;                                   // 128
154  
    std::uint64_t high1;                                   // 128
155  
    std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64
155  
    std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64
156  
    std::uint64_t high0;                                   // 64
156  
    std::uint64_t high0;                                   // 64
157  
    umul128(m, mul[0], &high0);                            // 0
157  
    umul128(m, mul[0], &high0);                            // 0
158  
    std::uint64_t const sum = high0 + low1;
158  
    std::uint64_t const sum = high0 + low1;
159  
    if (sum < high0)
159  
    if (sum < high0)
160  
        ++high1; // overflow into high1
160  
        ++high1; // overflow into high1
161  
    return shiftright128(sum, high1, j - 64);
161  
    return shiftright128(sum, high1, j - 64);
162  
}
162  
}
163  

163  

164  
inline
164  
inline
165  
std::uint64_t
165  
std::uint64_t
166  
mulShiftAll(
166  
mulShiftAll(
167  
    const std::uint64_t m,
167  
    const std::uint64_t m,
168  
    const std::uint64_t* const mul,
168  
    const std::uint64_t* const mul,
169  
    const std::int32_t j,
169  
    const std::int32_t j,
170  
    std::uint64_t* const vp,
170  
    std::uint64_t* const vp,
171  
    std::uint64_t* const vm,
171  
    std::uint64_t* const vm,
172  
    const std::uint32_t mmShift) noexcept
172  
    const std::uint32_t mmShift) noexcept
173  
{
173  
{
174  
    *vp = mulShift(4 * m + 2, mul, j);
174  
    *vp = mulShift(4 * m + 2, mul, j);
175  
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
175  
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
176  
    return mulShift(4 * m, mul, j);
176  
    return mulShift(4 * m, mul, j);
177  
}
177  
}
178  

178  

179  
#else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
179  
#else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
180  

180  

181  
inline
181  
inline
182  
std::uint64_t
182  
std::uint64_t
183  
mulShiftAll(
183  
mulShiftAll(
184  
    std::uint64_t m,
184  
    std::uint64_t m,
185  
    const std::uint64_t* const mul,
185  
    const std::uint64_t* const mul,
186  
    const std::int32_t j,
186  
    const std::int32_t j,
187  
    std::uint64_t* const vp,
187  
    std::uint64_t* const vp,
188  
    std::uint64_t* const vm,
188  
    std::uint64_t* const vm,
189  
    const std::uint32_t mmShift)
189  
    const std::uint32_t mmShift)
190  
{
190  
{
191  
    m <<= 1;
191  
    m <<= 1;
192  
    // m is maximum 55 bits
192  
    // m is maximum 55 bits
193  
    std::uint64_t tmp;
193  
    std::uint64_t tmp;
194  
    std::uint64_t const lo = umul128(m, mul[0], &tmp);
194  
    std::uint64_t const lo = umul128(m, mul[0], &tmp);
195  
    std::uint64_t hi;
195  
    std::uint64_t hi;
196  
    std::uint64_t const mid = tmp + umul128(m, mul[1], &hi);
196  
    std::uint64_t const mid = tmp + umul128(m, mul[1], &hi);
197  
    hi += mid < tmp; // overflow into hi
197  
    hi += mid < tmp; // overflow into hi
198  

198  

199  
    const std::uint64_t lo2 = lo + mul[0];
199  
    const std::uint64_t lo2 = lo + mul[0];
200  
    const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo);
200  
    const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo);
201  
    const std::uint64_t hi2 = hi + (mid2 < mid);
201  
    const std::uint64_t hi2 = hi + (mid2 < mid);
202  
    *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1));
202  
    *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1));
203  

203  

204  
    if (mmShift == 1)
204  
    if (mmShift == 1)
205  
    {
205  
    {
206  
        const std::uint64_t lo3 = lo - mul[0];
206  
        const std::uint64_t lo3 = lo - mul[0];
207  
        const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo);
207  
        const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo);
208  
        const std::uint64_t hi3 = hi - (mid3 > mid);
208  
        const std::uint64_t hi3 = hi - (mid3 > mid);
209  
        *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1));
209  
        *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1));
210  
    }
210  
    }
211  
    else
211  
    else
212  
    {
212  
    {
213  
        const std::uint64_t lo3 = lo + lo;
213  
        const std::uint64_t lo3 = lo + lo;
214  
        const std::uint64_t mid3 = mid + mid + (lo3 < lo);
214  
        const std::uint64_t mid3 = mid + mid + (lo3 < lo);
215  
        const std::uint64_t hi3 = hi + hi + (mid3 < mid);
215  
        const std::uint64_t hi3 = hi + hi + (mid3 < mid);
216  
        const std::uint64_t lo4 = lo3 - mul[0];
216  
        const std::uint64_t lo4 = lo3 - mul[0];
217  
        const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
217  
        const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
218  
        const std::uint64_t hi4 = hi3 - (mid4 > mid3);
218  
        const std::uint64_t hi4 = hi3 - (mid4 > mid3);
219  
        *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64));
219  
        *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64));
220  
    }
220  
    }
221  

221  

222  
    return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1));
222  
    return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1));
223  
}
223  
}
224  

224  

225  
#endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
225  
#endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
226  

226  

227  
inline
227  
inline
228  
std::uint32_t
228  
std::uint32_t
229  
decimalLength17(
229  
decimalLength17(
230  
    const std::uint64_t v)
230  
    const std::uint64_t v)
231  
{
231  
{
232  
    // This is slightly faster than a loop.
232  
    // This is slightly faster than a loop.
233  
    // The average output length is 16.38 digits, so we check high-to-low.
233  
    // The average output length is 16.38 digits, so we check high-to-low.
234  
    // Function precondition: v is not an 18, 19, or 20-digit number.
234  
    // Function precondition: v is not an 18, 19, or 20-digit number.
235  
    // (17 digits are sufficient for round-tripping.)
235  
    // (17 digits are sufficient for round-tripping.)
236  
    BOOST_ASSERT(v < 100000000000000000L);
236  
    BOOST_ASSERT(v < 100000000000000000L);
237  
    if (v >= 10000000000000000L) { return 17; }
237  
    if (v >= 10000000000000000L) { return 17; }
238  
    if (v >= 1000000000000000L) { return 16; }
238  
    if (v >= 1000000000000000L) { return 16; }
239  
    if (v >= 100000000000000L) { return 15; }
239  
    if (v >= 100000000000000L) { return 15; }
240  
    if (v >= 10000000000000L) { return 14; }
240  
    if (v >= 10000000000000L) { return 14; }
241  
    if (v >= 1000000000000L) { return 13; }
241  
    if (v >= 1000000000000L) { return 13; }
242  
    if (v >= 100000000000L) { return 12; }
242  
    if (v >= 100000000000L) { return 12; }
243  
    if (v >= 10000000000L) { return 11; }
243  
    if (v >= 10000000000L) { return 11; }
244  
    if (v >= 1000000000L) { return 10; }
244  
    if (v >= 1000000000L) { return 10; }
245  
    if (v >= 100000000L) { return 9; }
245  
    if (v >= 100000000L) { return 9; }
246  
    if (v >= 10000000L) { return 8; }
246  
    if (v >= 10000000L) { return 8; }
247  
    if (v >= 1000000L) { return 7; }
247  
    if (v >= 1000000L) { return 7; }
248  
    if (v >= 100000L) { return 6; }
248  
    if (v >= 100000L) { return 6; }
249  
    if (v >= 10000L) { return 5; }
249  
    if (v >= 10000L) { return 5; }
250  
    if (v >= 1000L) { return 4; }
250  
    if (v >= 1000L) { return 4; }
251  
    if (v >= 100L) { return 3; }
251  
    if (v >= 100L) { return 3; }
252  
    if (v >= 10L) { return 2; }
252  
    if (v >= 10L) { return 2; }
253  
    return 1;
253  
    return 1;
254  
}
254  
}
255  

255  

256  
// A floating decimal representing m * 10^e.
256  
// A floating decimal representing m * 10^e.
257  
struct floating_decimal_64
257  
struct floating_decimal_64
258  
{
258  
{
259  
    std::uint64_t mantissa;
259  
    std::uint64_t mantissa;
260  
    // Decimal exponent's range is -324 to 308
260  
    // Decimal exponent's range is -324 to 308
261  
    // inclusive, and can fit in a short if needed.
261  
    // inclusive, and can fit in a short if needed.
262  
    std::int32_t exponent;
262  
    std::int32_t exponent;
263  
};
263  
};
264  

264  

265  
inline
265  
inline
266  
floating_decimal_64
266  
floating_decimal_64
267  
d2d(
267  
d2d(
268  
    const std::uint64_t ieeeMantissa,
268  
    const std::uint64_t ieeeMantissa,
269  
    const std::uint32_t ieeeExponent)
269  
    const std::uint32_t ieeeExponent)
270  
{
270  
{
271  
    std::int32_t e2;
271  
    std::int32_t e2;
272  
    std::uint64_t m2;
272  
    std::uint64_t m2;
273  
    if (ieeeExponent == 0)
273  
    if (ieeeExponent == 0)
274  
    {
274  
    {
275  
        // We subtract 2 so that the bounds computation has 2 additional bits.
275  
        // We subtract 2 so that the bounds computation has 2 additional bits.
276  
        e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
276  
        e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
277  
        m2 = ieeeMantissa;
277  
        m2 = ieeeMantissa;
278  
    }
278  
    }
279  
    else
279  
    else
280  
    {
280  
    {
281  
        e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
281  
        e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
282  
        m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
282  
        m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
283  
    }
283  
    }
284  
    const bool even = (m2 & 1) == 0;
284  
    const bool even = (m2 & 1) == 0;
285  
    const bool acceptBounds = even;
285  
    const bool acceptBounds = even;
286  

286  

287  
#ifdef RYU_DEBUG
287  
#ifdef RYU_DEBUG
288  
    printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
288  
    printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
289  
#endif
289  
#endif
290  

290  

291  
    // Step 2: Determine the interval of valid decimal representations.
291  
    // Step 2: Determine the interval of valid decimal representations.
292  
    const std::uint64_t mv = 4 * m2;
292  
    const std::uint64_t mv = 4 * m2;
293  
    // Implicit bool -> int conversion. True is 1, false is 0.
293  
    // Implicit bool -> int conversion. True is 1, false is 0.
294  
    const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
294  
    const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
295  
    // We would compute mp and mm like this:
295  
    // We would compute mp and mm like this:
296  
    // uint64_t mp = 4 * m2 + 2;
296  
    // uint64_t mp = 4 * m2 + 2;
297  
    // uint64_t mm = mv - 1 - mmShift;
297  
    // uint64_t mm = mv - 1 - mmShift;
298  

298  

299  
    // Step 3: Convert to a decimal power base using 128-bit arithmetic.
299  
    // Step 3: Convert to a decimal power base using 128-bit arithmetic.
300  
    std::uint64_t vr, vp, vm;
300  
    std::uint64_t vr, vp, vm;
301  
    std::int32_t e10;
301  
    std::int32_t e10;
302  
    bool vmIsTrailingZeros = false;
302  
    bool vmIsTrailingZeros = false;
303  
    bool vrIsTrailingZeros = false;
303  
    bool vrIsTrailingZeros = false;
304  
    if (e2 >= 0) {
304  
    if (e2 >= 0) {
305  
        // I tried special-casing q == 0, but there was no effect on performance.
305  
        // I tried special-casing q == 0, but there was no effect on performance.
306  
        // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
306  
        // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
307  
        const std::uint32_t q = log10Pow2(e2) - (e2 > 3);
307  
        const std::uint32_t q = log10Pow2(e2) - (e2 > 3);
308  
        e10 = (std::int32_t)q;
308  
        e10 = (std::int32_t)q;
309  
        const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1;
309  
        const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1;
310  
        const std::int32_t i = -e2 + (std::int32_t)q + k;
310  
        const std::int32_t i = -e2 + (std::int32_t)q + k;
311  
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
311  
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
312  
        uint64_t pow5[2];
312  
        uint64_t pow5[2];
313  
        double_computeInvPow5(q, pow5);
313  
        double_computeInvPow5(q, pow5);
314  
        vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
314  
        vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
315  
#else
315  
#else
316  
        vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift);
316  
        vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift);
317  
#endif
317  
#endif
318  
#ifdef RYU_DEBUG
318  
#ifdef RYU_DEBUG
319  
        printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
319  
        printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
320  
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
320  
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
321  
#endif
321  
#endif
322  
        if (q <= 21)
322  
        if (q <= 21)
323  
        {
323  
        {
324  
            // This should use q <= 22, but I think 21 is also safe. Smaller values
324  
            // This should use q <= 22, but I think 21 is also safe. Smaller values
325  
            // may still be safe, but it's more difficult to reason about them.
325  
            // may still be safe, but it's more difficult to reason about them.
326  
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
326  
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
327  
            const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv));
327  
            const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv));
328  
            if (mvMod5 == 0)
328  
            if (mvMod5 == 0)
329  
            {
329  
            {
330  
                vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
330  
                vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
331  
            }
331  
            }
332  
            else if (acceptBounds)
332  
            else if (acceptBounds)
333  
            {
333  
            {
334  
                // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
334  
                // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
335  
                // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
335  
                // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
336  
                // <=> true && pow5Factor(mm) >= q, since e2 >= q.
336  
                // <=> true && pow5Factor(mm) >= q, since e2 >= q.
337  
                vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
337  
                vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
338  
            }
338  
            }
339  
            else
339  
            else
340  
            {
340  
            {
341  
                // Same as min(e2 + 1, pow5Factor(mp)) >= q.
341  
                // Same as min(e2 + 1, pow5Factor(mp)) >= q.
342  
                vp -= multipleOfPowerOf5(mv + 2, q);
342  
                vp -= multipleOfPowerOf5(mv + 2, q);
343  
            }
343  
            }
344  
        }
344  
        }
345  
    }
345  
    }
346  
    else
346  
    else
347  
    {
347  
    {
348  
        // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
348  
        // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
349  
        const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1);
349  
        const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1);
350  
        e10 = (std::int32_t)q + e2;
350  
        e10 = (std::int32_t)q + e2;
351  
        const std::int32_t i = -e2 - (std::int32_t)q;
351  
        const std::int32_t i = -e2 - (std::int32_t)q;
352  
        const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
352  
        const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
353  
        const std::int32_t j = (std::int32_t)q - k;
353  
        const std::int32_t j = (std::int32_t)q - k;
354  
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
354  
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
355  
        std::uint64_t pow5[2];
355  
        std::uint64_t pow5[2];
356  
        double_computePow5(i, pow5);
356  
        double_computePow5(i, pow5);
357  
        vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
357  
        vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
358  
#else
358  
#else
359  
        vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift);
359  
        vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift);
360  
#endif
360  
#endif
361  
#ifdef RYU_DEBUG
361  
#ifdef RYU_DEBUG
362  
        printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
362  
        printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
363  
        printf("%u %d %d %d\n", q, i, k, j);
363  
        printf("%u %d %d %d\n", q, i, k, j);
364  
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
364  
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
365  
#endif
365  
#endif
366  
        if (q <= 1)
366  
        if (q <= 1)
367  
        {
367  
        {
368  
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
368  
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
369  
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
369  
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
370  
            vrIsTrailingZeros = true;
370  
            vrIsTrailingZeros = true;
371  
            if (acceptBounds)
371  
            if (acceptBounds)
372  
            {
372  
            {
373  
                // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
373  
                // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
374  
                vmIsTrailingZeros = mmShift == 1;
374  
                vmIsTrailingZeros = mmShift == 1;
375  
            }
375  
            }
376  
            else
376  
            else
377  
            {
377  
            {
378  
                // mp = mv + 2, so it always has at least one trailing 0 bit.
378  
                // mp = mv + 2, so it always has at least one trailing 0 bit.
379  
                --vp;
379  
                --vp;
380  
            }
380  
            }
381  
        }
381  
        }
382  
        else if (q < 63)
382  
        else if (q < 63)
383  
        {
383  
        {
384  
            // TODO(ulfjack): Use a tighter bound here.
384  
            // TODO(ulfjack): Use a tighter bound here.
385  
            // We want to know if the full product has at least q trailing zeros.
385  
            // We want to know if the full product has at least q trailing zeros.
386  
            // We need to compute min(p2(mv), p5(mv) - e2) >= q
386  
            // We need to compute min(p2(mv), p5(mv) - e2) >= q
387  
            // <=> p2(mv) >= q && p5(mv) - e2 >= q
387  
            // <=> p2(mv) >= q && p5(mv) - e2 >= q
388  
            // <=> p2(mv) >= q (because -e2 >= q)
388  
            // <=> p2(mv) >= q (because -e2 >= q)
389  
            vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
389  
            vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
390  
#ifdef RYU_DEBUG
390  
#ifdef RYU_DEBUG
391  
            printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
391  
            printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
392  
#endif
392  
#endif
393  
        }
393  
        }
394  
    }
394  
    }
395  
#ifdef RYU_DEBUG
395  
#ifdef RYU_DEBUG
396  
    printf("e10=%d\n", e10);
396  
    printf("e10=%d\n", e10);
397  
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
397  
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
398  
    printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
398  
    printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
399  
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
399  
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
400  
#endif
400  
#endif
401  

401  

402  
    // Step 4: Find the shortest decimal representation in the interval of valid representations.
402  
    // Step 4: Find the shortest decimal representation in the interval of valid representations.
403  
    std::int32_t removed = 0;
403  
    std::int32_t removed = 0;
404  
    std::uint8_t lastRemovedDigit = 0;
404  
    std::uint8_t lastRemovedDigit = 0;
405  
    std::uint64_t output;
405  
    std::uint64_t output;
406  
    // On average, we remove ~2 digits.
406  
    // On average, we remove ~2 digits.
407  
    if (vmIsTrailingZeros || vrIsTrailingZeros)
407  
    if (vmIsTrailingZeros || vrIsTrailingZeros)
408  
    {
408  
    {
409  
        // General case, which happens rarely (~0.7%).
409  
        // General case, which happens rarely (~0.7%).
410  
        for (;;)
410  
        for (;;)
411  
        {
411  
        {
412  
            const std::uint64_t vpDiv10 = div10(vp);
412  
            const std::uint64_t vpDiv10 = div10(vp);
413  
            const std::uint64_t vmDiv10 = div10(vm);
413  
            const std::uint64_t vmDiv10 = div10(vm);
414  
            if (vpDiv10 <= vmDiv10)
414  
            if (vpDiv10 <= vmDiv10)
415  
                break;
415  
                break;
416  
            const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
416  
            const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
417  
            const std::uint64_t vrDiv10 = div10(vr);
417  
            const std::uint64_t vrDiv10 = div10(vr);
418  
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
418  
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
419  
            vmIsTrailingZeros &= vmMod10 == 0;
419  
            vmIsTrailingZeros &= vmMod10 == 0;
420  
            vrIsTrailingZeros &= lastRemovedDigit == 0;
420  
            vrIsTrailingZeros &= lastRemovedDigit == 0;
421  
            lastRemovedDigit = (uint8_t)vrMod10;
421  
            lastRemovedDigit = (uint8_t)vrMod10;
422  
            vr = vrDiv10;
422  
            vr = vrDiv10;
423  
            vp = vpDiv10;
423  
            vp = vpDiv10;
424  
            vm = vmDiv10;
424  
            vm = vmDiv10;
425  
            ++removed;
425  
            ++removed;
426  
        }
426  
        }
427  
#ifdef RYU_DEBUG
427  
#ifdef RYU_DEBUG
428  
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
428  
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
429  
        printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
429  
        printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
430  
#endif
430  
#endif
431  
        if (vmIsTrailingZeros)
431  
        if (vmIsTrailingZeros)
432  
        {
432  
        {
433  
            for (;;)
433  
            for (;;)
434  
            {
434  
            {
435  
                const std::uint64_t vmDiv10 = div10(vm);
435  
                const std::uint64_t vmDiv10 = div10(vm);
436  
                const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
436  
                const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
437  
                if (vmMod10 != 0)
437  
                if (vmMod10 != 0)
438  
                    break;
438  
                    break;
439  
                const std::uint64_t vpDiv10 = div10(vp);
439  
                const std::uint64_t vpDiv10 = div10(vp);
440  
                const std::uint64_t vrDiv10 = div10(vr);
440  
                const std::uint64_t vrDiv10 = div10(vr);
441  
                const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
441  
                const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
442  
                vrIsTrailingZeros &= lastRemovedDigit == 0;
442  
                vrIsTrailingZeros &= lastRemovedDigit == 0;
443  
                lastRemovedDigit = (uint8_t)vrMod10;
443  
                lastRemovedDigit = (uint8_t)vrMod10;
444  
                vr = vrDiv10;
444  
                vr = vrDiv10;
445  
                vp = vpDiv10;
445  
                vp = vpDiv10;
446  
                vm = vmDiv10;
446  
                vm = vmDiv10;
447  
                ++removed;
447  
                ++removed;
448  
            }
448  
            }
449  
        }
449  
        }
450  
#ifdef RYU_DEBUG
450  
#ifdef RYU_DEBUG
451  
        printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
451  
        printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
452  
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
452  
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
453  
#endif
453  
#endif
454  
        if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
454  
        if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
455  
        {
455  
        {
456  
            // Round even if the exact number is .....50..0.
456  
            // Round even if the exact number is .....50..0.
457  
            lastRemovedDigit = 4;
457  
            lastRemovedDigit = 4;
458  
        }
458  
        }
459  
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
459  
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
460  
        output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
460  
        output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
461  
    }
461  
    }
462  
    else
462  
    else
463  
    {
463  
    {
464  
        // Specialized for the common case (~99.3%). Percentages below are relative to this.
464  
        // Specialized for the common case (~99.3%). Percentages below are relative to this.
465  
        bool roundUp = false;
465  
        bool roundUp = false;
466  
        const std::uint64_t vpDiv100 = div100(vp);
466  
        const std::uint64_t vpDiv100 = div100(vp);
467  
        const std::uint64_t vmDiv100 = div100(vm);
467  
        const std::uint64_t vmDiv100 = div100(vm);
468  
        if (vpDiv100 > vmDiv100)
468  
        if (vpDiv100 > vmDiv100)
469  
        {
469  
        {
470  
            // Optimization: remove two digits at a time (~86.2%).
470  
            // Optimization: remove two digits at a time (~86.2%).
471  
            const std::uint64_t vrDiv100 = div100(vr);
471  
            const std::uint64_t vrDiv100 = div100(vr);
472  
            const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100);
472  
            const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100);
473  
            roundUp = vrMod100 >= 50;
473  
            roundUp = vrMod100 >= 50;
474  
            vr = vrDiv100;
474  
            vr = vrDiv100;
475  
            vp = vpDiv100;
475  
            vp = vpDiv100;
476  
            vm = vmDiv100;
476  
            vm = vmDiv100;
477  
            removed += 2;
477  
            removed += 2;
478  
        }
478  
        }
479  
        // Loop iterations below (approximately), without optimization above:
479  
        // Loop iterations below (approximately), without optimization above:
480  
        // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
480  
        // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
481  
        // Loop iterations below (approximately), with optimization above:
481  
        // Loop iterations below (approximately), with optimization above:
482  
        // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
482  
        // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
483  
        for (;;)
483  
        for (;;)
484  
        {
484  
        {
485  
            const std::uint64_t vpDiv10 = div10(vp);
485  
            const std::uint64_t vpDiv10 = div10(vp);
486  
            const std::uint64_t vmDiv10 = div10(vm);
486  
            const std::uint64_t vmDiv10 = div10(vm);
487  
            if (vpDiv10 <= vmDiv10)
487  
            if (vpDiv10 <= vmDiv10)
488  
                break;
488  
                break;
489  
            const std::uint64_t vrDiv10 = div10(vr);
489  
            const std::uint64_t vrDiv10 = div10(vr);
490  
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
490  
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
491  
            roundUp = vrMod10 >= 5;
491  
            roundUp = vrMod10 >= 5;
492  
            vr = vrDiv10;
492  
            vr = vrDiv10;
493  
            vp = vpDiv10;
493  
            vp = vpDiv10;
494  
            vm = vmDiv10;
494  
            vm = vmDiv10;
495  
            ++removed;
495  
            ++removed;
496  
        }
496  
        }
497  
#ifdef RYU_DEBUG
497  
#ifdef RYU_DEBUG
498  
        printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
498  
        printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
499  
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
499  
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
500  
#endif
500  
#endif
501  
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
501  
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
502  
        output = vr + (vr == vm || roundUp);
502  
        output = vr + (vr == vm || roundUp);
503  
    }
503  
    }
504  
    const std::int32_t exp = e10 + removed;
504  
    const std::int32_t exp = e10 + removed;
505  

505  

506  
#ifdef RYU_DEBUG
506  
#ifdef RYU_DEBUG
507  
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
507  
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
508  
    printf("O=%" PRIu64 "\n", output);
508  
    printf("O=%" PRIu64 "\n", output);
509  
    printf("EXP=%d\n", exp);
509  
    printf("EXP=%d\n", exp);
510  
#endif
510  
#endif
511  

511  

512  
    floating_decimal_64 fd;
512  
    floating_decimal_64 fd;
513  
    fd.exponent = exp;
513  
    fd.exponent = exp;
514  
    fd.mantissa = output;
514  
    fd.mantissa = output;
515  
    return fd;
515  
    return fd;
516  
}
516  
}
517  

517  

518  
inline
518  
inline
519  
int
519  
int
520  
to_chars(
520  
to_chars(
521  
    const floating_decimal_64 v,
521  
    const floating_decimal_64 v,
522  
    const bool sign,
522  
    const bool sign,
523  
    char* const result)
523  
    char* const result)
524  
{
524  
{
525  
    // Step 5: Print the decimal representation.
525  
    // Step 5: Print the decimal representation.
526  
    int index = 0;
526  
    int index = 0;
527  
    if (sign)
527  
    if (sign)
528  
        result[index++] = '-';
528  
        result[index++] = '-';
529  

529  

530  
    std::uint64_t output = v.mantissa;
530  
    std::uint64_t output = v.mantissa;
531  
    std::uint32_t const olength = decimalLength17(output);
531  
    std::uint32_t const olength = decimalLength17(output);
532  

532  

533  
#ifdef RYU_DEBUG
533  
#ifdef RYU_DEBUG
534  
    printf("DIGITS=%" PRIu64 "\n", v.mantissa);
534  
    printf("DIGITS=%" PRIu64 "\n", v.mantissa);
535  
    printf("OLEN=%u\n", olength);
535  
    printf("OLEN=%u\n", olength);
536  
    printf("EXP=%u\n", v.exponent + olength);
536  
    printf("EXP=%u\n", v.exponent + olength);
537  
#endif
537  
#endif
538  

538  

539  
    // Print the decimal digits.
539  
    // Print the decimal digits.
540  
    // The following code is equivalent to:
540  
    // The following code is equivalent to:
541  
    // for (uint32_t i = 0; i < olength - 1; ++i) {
541  
    // for (uint32_t i = 0; i < olength - 1; ++i) {
542  
    //   const uint32_t c = output % 10; output /= 10;
542  
    //   const uint32_t c = output % 10; output /= 10;
543  
    //   result[index + olength - i] = (char) ('0' + c);
543  
    //   result[index + olength - i] = (char) ('0' + c);
544  
    // }
544  
    // }
545  
    // result[index] = '0' + output % 10;
545  
    // result[index] = '0' + output % 10;
546  

546  

547  
    std::uint32_t i = 0;
547  
    std::uint32_t i = 0;
548  
    // We prefer 32-bit operations, even on 64-bit platforms.
548  
    // We prefer 32-bit operations, even on 64-bit platforms.
549  
    // We have at most 17 digits, and uint32_t can store 9 digits.
549  
    // We have at most 17 digits, and uint32_t can store 9 digits.
550  
    // If output doesn't fit into uint32_t, we cut off 8 digits,
550  
    // If output doesn't fit into uint32_t, we cut off 8 digits,
551  
    // so the rest will fit into uint32_t.
551  
    // so the rest will fit into uint32_t.
552  
    if ((output >> 32) != 0)
552  
    if ((output >> 32) != 0)
553  
    {
553  
    {
554  
        // Expensive 64-bit division.
554  
        // Expensive 64-bit division.
555  
        std::uint64_t const q = div1e8(output);
555  
        std::uint64_t const q = div1e8(output);
556  
        std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q);
556  
        std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q);
557  
        output = q;
557  
        output = q;
558  

558  

559  
        const std::uint32_t c = output2 % 10000;
559  
        const std::uint32_t c = output2 % 10000;
560  
        output2 /= 10000;
560  
        output2 /= 10000;
561  
        const std::uint32_t d = output2 % 10000;
561  
        const std::uint32_t d = output2 % 10000;
562  
        const std::uint32_t c0 = (c % 100) << 1;
562  
        const std::uint32_t c0 = (c % 100) << 1;
563  
        const std::uint32_t c1 = (c / 100) << 1;
563  
        const std::uint32_t c1 = (c / 100) << 1;
564  
        const std::uint32_t d0 = (d % 100) << 1;
564  
        const std::uint32_t d0 = (d % 100) << 1;
565  
        const std::uint32_t d1 = (d / 100) << 1;
565  
        const std::uint32_t d1 = (d / 100) << 1;
566  
        std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
566  
        std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
567  
        std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
567  
        std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
568  
        std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2);
568  
        std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2);
569  
        std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2);
569  
        std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2);
570  
        i += 8;
570  
        i += 8;
571  
    }
571  
    }
572  
    uint32_t output2 = (std::uint32_t)output;
572  
    uint32_t output2 = (std::uint32_t)output;
573  
    while (output2 >= 10000)
573  
    while (output2 >= 10000)
574  
    {
574  
    {
575  
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
575  
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
576  
        const uint32_t c = output2 - 10000 * (output2 / 10000);
576  
        const uint32_t c = output2 - 10000 * (output2 / 10000);
577  
#else
577  
#else
578  
        const uint32_t c = output2 % 10000;
578  
        const uint32_t c = output2 % 10000;
579  
#endif
579  
#endif
580  
        output2 /= 10000;
580  
        output2 /= 10000;
581  
        const uint32_t c0 = (c % 100) << 1;
581  
        const uint32_t c0 = (c % 100) << 1;
582  
        const uint32_t c1 = (c / 100) << 1;
582  
        const uint32_t c1 = (c / 100) << 1;
583  
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
583  
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
584  
        memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
584  
        memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
585  
        i += 4;
585  
        i += 4;
586  
    }
586  
    }
587  
    if (output2 >= 100) {
587  
    if (output2 >= 100) {
588  
        const uint32_t c = (output2 % 100) << 1;
588  
        const uint32_t c = (output2 % 100) << 1;
589  
        output2 /= 100;
589  
        output2 /= 100;
590  
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2);
590  
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2);
591  
        i += 2;
591  
        i += 2;
592  
    }
592  
    }
593  
    if (output2 >= 10) {
593  
    if (output2 >= 10) {
594  
        const uint32_t c = output2 << 1;
594  
        const uint32_t c = output2 << 1;
595  
        // We can't use memcpy here: the decimal dot goes between these two digits.
595  
        // We can't use memcpy here: the decimal dot goes between these two digits.
596  
        result[index + olength - i] = DIGIT_TABLE()[c + 1];
596  
        result[index + olength - i] = DIGIT_TABLE()[c + 1];
597  
        result[index] = DIGIT_TABLE()[c];
597  
        result[index] = DIGIT_TABLE()[c];
598  
    }
598  
    }
599  
    else {
599  
    else {
600  
        result[index] = (char)('0' + output2);
600  
        result[index] = (char)('0' + output2);
601  
    }
601  
    }
602  

602  

603  
    // Print decimal point if needed.
603  
    // Print decimal point if needed.
604  
    if (olength > 1) {
604  
    if (olength > 1) {
605  
        result[index + 1] = '.';
605  
        result[index + 1] = '.';
606  
        index += olength + 1;
606  
        index += olength + 1;
607  
    }
607  
    }
608  
    else {
608  
    else {
609  
        ++index;
609  
        ++index;
610  
    }
610  
    }
611  

611  

612  
    // Print the exponent.
612  
    // Print the exponent.
613  
    result[index++] = 'E';
613  
    result[index++] = 'E';
614  
    int32_t exp = v.exponent + (int32_t)olength - 1;
614  
    int32_t exp = v.exponent + (int32_t)olength - 1;
615  
    if (exp < 0) {
615  
    if (exp < 0) {
616  
        result[index++] = '-';
616  
        result[index++] = '-';
617  
        exp = -exp;
617  
        exp = -exp;
618  
    }
618  
    }
619  

619  

620  
    if (exp >= 100) {
620  
    if (exp >= 100) {
621  
        const int32_t c = exp % 10;
621  
        const int32_t c = exp % 10;
622  
        memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2);
622  
        memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2);
623  
        result[index + 2] = (char)('0' + c);
623  
        result[index + 2] = (char)('0' + c);
624  
        index += 3;
624  
        index += 3;
625  
    }
625  
    }
626  
    else if (exp >= 10) {
626  
    else if (exp >= 10) {
627  
        memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2);
627  
        memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2);
628  
        index += 2;
628  
        index += 2;
629  
    }
629  
    }
630  
    else {
630  
    else {
631  
        result[index++] = (char)('0' + exp);
631  
        result[index++] = (char)('0' + exp);
632  
    }
632  
    }
633  

633  

634  
    return index;
634  
    return index;
635  
}
635  
}
636  

636  

637  
static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
637  
static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
638  
  floating_decimal_64* const v) {
638  
  floating_decimal_64* const v) {
639  
  const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
639  
  const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
640  
  const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
640  
  const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
641  

641  

642  
  if (e2 > 0) {
642  
  if (e2 > 0) {
643  
    // f = m2 * 2^e2 >= 2^53 is an integer.
643  
    // f = m2 * 2^e2 >= 2^53 is an integer.
644  
    // Ignore this case for now.
644  
    // Ignore this case for now.
645  
    return false;
645  
    return false;
646  
  }
646  
  }
647  

647  

648  
  if (e2 < -52) {
648  
  if (e2 < -52) {
649  
    // f < 1.
649  
    // f < 1.
650  
    return false;
650  
    return false;
651  
  }
651  
  }
652  

652  

653  
  // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
653  
  // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
654  
  // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
654  
  // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
655  
  const uint64_t mask = (1ull << -e2) - 1;
655  
  const uint64_t mask = (1ull << -e2) - 1;
656  
  const uint64_t fraction = m2 & mask;
656  
  const uint64_t fraction = m2 & mask;
657  
  if (fraction != 0) {
657  
  if (fraction != 0) {
658  
    return false;
658  
    return false;
659  
  }
659  
  }
660  

660  

661  
  // f is an integer in the range [1, 2^53).
661  
  // f is an integer in the range [1, 2^53).
662  
  // Note: mantissa might contain trailing (decimal) 0's.
662  
  // Note: mantissa might contain trailing (decimal) 0's.
663  
  // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
663  
  // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
664  
  v->mantissa = m2 >> -e2;
664  
  v->mantissa = m2 >> -e2;
665  
  v->exponent = 0;
665  
  v->exponent = 0;
666  
  return true;
666  
  return true;
667  
}
667  
}
668  

668  

669  
} // detail
669  
} // detail
670  

670  

671  
int
671  
int
672  
d2s_buffered_n(
672  
d2s_buffered_n(
673  
    double f,
673  
    double f,
674  
    char* result,
674  
    char* result,
675  
    bool allow_infinity_and_nan) noexcept
675  
    bool allow_infinity_and_nan) noexcept
676  
{
676  
{
677  
    using namespace detail;
677  
    using namespace detail;
678  
    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
678  
    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
679  
    std::uint64_t const bits = double_to_bits(f);
679  
    std::uint64_t const bits = double_to_bits(f);
680  

680  

681  
#ifdef RYU_DEBUG
681  
#ifdef RYU_DEBUG
682  
    printf("IN=");
682  
    printf("IN=");
683  
    for (std::int32_t bit = 63; bit >= 0; --bit) {
683  
    for (std::int32_t bit = 63; bit >= 0; --bit) {
684  
        printf("%d", (int)((bits >> bit) & 1));
684  
        printf("%d", (int)((bits >> bit) & 1));
685  
    }
685  
    }
686  
    printf("\n");
686  
    printf("\n");
687  
#endif
687  
#endif
688  

688  

689  
    // Decode bits into sign, mantissa, and exponent.
689  
    // Decode bits into sign, mantissa, and exponent.
690  
    const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
690  
    const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
691  
    const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
691  
    const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
692  
    const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
692  
    const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
693  
    // Case distinction; exit early for the easy cases.
693  
    // Case distinction; exit early for the easy cases.
694  
    if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
694  
    if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
695  
        // We changed how special numbers are output by default
695  
        // We changed how special numbers are output by default
696  
        if (allow_infinity_and_nan)
696  
        if (allow_infinity_and_nan)
697  
            return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
697  
            return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
698  
        else
698  
        else
699  
            return copy_special_str_conforming(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
699  
            return copy_special_str_conforming(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
700  

700  

701  
    }
701  
    }
702  

702  

703  
    floating_decimal_64 v;
703  
    floating_decimal_64 v;
704  
    const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
704  
    const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
705  
    if (isSmallInt) {
705  
    if (isSmallInt) {
706  
        // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
706  
        // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
707  
        // For scientific notation we need to move these zeros into the exponent.
707  
        // For scientific notation we need to move these zeros into the exponent.
708  
        // (This is not needed for fixed-point notation, so it might be beneficial to trim
708  
        // (This is not needed for fixed-point notation, so it might be beneficial to trim
709  
        // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
709  
        // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
710  
        for (;;) {
710  
        for (;;) {
711  
            std::uint64_t const q = div10(v.mantissa);
711  
            std::uint64_t const q = div10(v.mantissa);
712  
            std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q);
712  
            std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q);
713  
            if (r != 0)
713  
            if (r != 0)
714  
                break;
714  
                break;
715  
            v.mantissa = q;
715  
            v.mantissa = q;
716  
            ++v.exponent;
716  
            ++v.exponent;
717  
        }
717  
        }
718  
    }
718  
    }
719  
    else {
719  
    else {
720  
        v = d2d(ieeeMantissa, ieeeExponent);
720  
        v = d2d(ieeeMantissa, ieeeExponent);
721  
    }
721  
    }
722  

722  

723  
    return to_chars(v, ieeeSign, result);
723  
    return to_chars(v, ieeeSign, result);
724  
}
724  
}
725  

725  

726  
} // ryu
726  
} // ryu
727  

727  

728  
} // detail
728  
} // detail
729  
} // namespace json
729  
} // namespace json
730  
} // namespace boost
730  
} // namespace boost
731  

731  

732  
#endif
732  
#endif